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I. INTRODUCTION

Random aggregates of overlapping objects are frequently studied geometries
in the physics of disordered media: Objects with physical properties
described by certain moduli are placed, at random, in a matrix with
different moduli.

Much work for random aggregates concerns effective properties. Of
particular interest, and difficulty, is to predict effective properties of highly
inhomogeneous aggregates close to the continuum percolation threshold,( 1,2)

that is, close to the area fraction for which the randomly placed objects
start to form a connected path through the material. Popular numerical
methods for this problem are often based on statistical ideas and include
biased diffusion,(3) Monte Carlo or random walk simulations,(4,5) "blind-ant"
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algorithms,(6) resistor network approximations,(7,8) and series expansion
incorporating structural parameters.(9-11) Most of these methods converge
as 1/y/N where TV is the computational work. A typical relative error for
the effective moduli of strongly inhomogeneous large aggregates is on the
order of 0.05. The justification for using low-order accurate methods seems
to be a notion that high-order accurate methods are impossible to apply.
The most reliable estimates for large random systems, until now, are
perhaps experimental measurements on steel and molybdenum sheets(12)

and thin aluminum films(13) with drilled holes.
This paper demonstrates that the accurate numerical calculation of

effective properties of strongly inhomogeneous large random aggregates of
overlapping objects is not only possible, but also simple to perform on a
regular workstation. We specialize to overlapping disks and compute the
effective conductivity for unit cells at two hundred different area fractions
and with a relative error of 0.0005. At percolation the unit cells contain
around 3,500 disks. The key ingredients in our algorithm are: (1) A new
integral equation formulation for the electrostatic PDE on a doubly peri-
odic domain. (2) The Fast Multipole Method for potential field evalua-
tions.(14-16) (3) A recent algorithm for the evaluation of layer potentials
close to their sources.(17)

II. INTEGRAL EQUATIONS AND EFFECTIVE PROPERTIES

This section reviews integral equation reformulations of the elec-
trostatic PDE for two-dimensional two-component composite materials.
The material's geometry is given in a unit cell, taken to be the square
Do = (-1/2, 1/2] x( -1/2, 1/2], and periodically repeated as to tile the
entire plane. The area fractions and the conductivities of the components
are p1, p2, a1, and a2. If one component forms at least one infinitely large
connected region while the other component forms finite regions the com-
posite is called a suspension of inclusions. The interfaces between the com-
ponents in the unit cell are called Funit. The interfaces runit and their peri-
odic images are called F. The interfaces r and the parts of the unit cell
boundary that are covered with component two and their periodic images
are called rext.

An average electric field e of unit strength is applied to the composite.
The potential Ur at position r in the composite can then be represented on
the form
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where p is an unknown density and rt and pt denote position and density
at arclength t. The density p can be solved for from the integral equation

where ns is the unit normal at arclength s pointing into component one.
Equation (2) follows from insertion of Eq. (1) into the electrostatic PDE.
If the composite is a suspension where no inclusion overlaps the unit cell
boundary, and if component one denotes the matrix, the effective conduc-
tivity aeff in the direction e can be written

Equation (2) is the choice of Greengard and Moura(l8) in their pioneering
work on the electrostatics of large suspensions, and of Cheng and
Greengard(19) in their work on random suspensions of non-overlapping
disks.

If the composite is a suspension where inclusions do overlap the unit
cell boundary, the effective conductivity can still be computed from Eq. (3)
after a modification of the shape of the unit cell. If the composite is not a
suspension Eq. (3) does not apply without more extensive modifications.
Another possibility is to use the formula

where the integral goes along the unit cell boundary and where a short-
hand notation for the directional derivative is used.

There are many ways to represent the potential Ur in the composite.
Equation (1), the single layer representation, is just a convenient choice.
Another integral formulation is based on the representation

In terms of a scaled potential ur defined by
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and with the use of Green's second identity, an integral equation can be
derived

The effective conductivity in the direction e can be computed from u via

The integral kernels in Eq. (2) and Eq. (7) are each other's adjoints.
One could therefore expect that the amount of work needed to solve the
two equations with a given error tolerance should be similar. A closer
inspection reveals a difference between the equations: the left hand side in
Eq. (7) is a smoother quantity than the left hand side in Eq. (2). Does this
mean that Eq. (7) is easier to solve than Eq. (2)? As we shall see in the next
section, the answer to this question is often "yes." An difficulty with Eq. (7)
is that it calls for integration involving a non-periodic and unbounded
function, ur, over an infinite domain.

We now propose a reformulation of Eq. (7) that is a simplification
from a numerical viewpoint: First the potential ur is split up into a linearly
growing and into a periodic and bounded part

Then Eq. (7) is rewritten

where r* is the position r translated with a lattice vector back into the unit
cell. Equation (8) becomes

In Eq. (10) the integral on the left hand side includes parts of the unit cell
boundary. This integral is simple, since it only involves known geometric
quantities.
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Yet another choice for the potential is the layer representation

where n±, is the unit tangential vector at t, pointing in positive direction.
The electrostatic PDE leads to the integral equation

where e± is the vector e rotated 90 degrees counter-clockwise. The effective
conductivity in the direction e is

While Eq. (12) may be simpler to evaluate than Eq. (5), the integral Eq.
(13) is rather similar to the integral Eq. (7) and it will not be discussed
further in this paper.

III. NUMERICAL COMPARISON OF INTEGRAL EQUATIONS

In this section we compare the performance of Eqs. (2) and (3),
Eqs. (2) and (4) and Eqs. (10) and ( 1 1 ) for various composites with dif-
ferent kinds of interfaces. In all examples we choose a1 = 1 and a2= 1000.
For the numerical solution of the integral equation we use a recent
Nystrom algorithm(17) which relies on 16-point Gauss-Legendre quad-
rature with aposteriori refinement, solution of systems of linear equations
with the GMRES(20) iterative solver, an adaptive method for evaluation of
layer potentials close to their sources, and Fast Multipole Method(14 16)

acceleration of matrix-vector multiplication. Initially, we place eight
Gaussian segments per disk. For each stage of adaptive refinement we
increase the number of segments with about 25%. The "tolerance" is the
value of the residual below which GMRES iteration is terminated. This
value is chosen experimentally as to give the highest achievable accuracy
with the fewest number of iterations for each stage.

A. Suspensions with Smooth Interfaces

We first look at a suspension with smooth interfaces: the random
suspension of equisized disks shown in Fig. 1 where p2 = 0.6. Table I shows
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Fig. 1. A unit cell with a "random" suspension of 1024 disks at area fraction p2 = 0.6.

that for very high resolution, Eqs. (10) and (11) and Eqs. (2) and (3) per-
form similarly. For lower resolution Eqs. (10) and (11) gives better
accuracy than Eqs. (2) and (3).

B. Suspensions with Nonsmooth Interfaces

We next turn to a suspension with nonsmooth interfaces: the arrange-
ment of 902 overlapping disks shown in Fig. 2. The disks have radius
R = 0.02. In the left arrangement the disks are placed at random with the
constraint that no disks overlap the unit cell boundary. In this way we
make sure that the material is a suspension and that Eq. (3) applies. The
right arrangement is the same as the left arrangement, the difference being
that all disks are translated so that there is a considerable number of disks

Table I. Effective Conductivity in the x-Direction for the "Random"

"eff, Eq. (3)
(aeff ,Eq. (11)
iterations, Eq. (2)
iterations, Eq. (10)
points, Eq. (2)
points, Eq. (10)
tolerance, Eq. (2)
tolerance, Eq. (10)

Suspension

Stage 1

5
5.14
39
51
131,072
131,936
I O - 2

10~6

i of 1024 Disks in

Stage 2

15.14
15.1408
27
53
180,224
181,088
io - 2

io- 7

Fig. 1"

Stage 3

5.14079
5.140789
56
67
229,376
229,696
io-4

10-"

Stage 4

5.14078902
5.14078902
72
82
278,528
277,136
io-7

10-"

" The infinite medium has conductivity a, = 1 and the disks have conductivity o2 = 1000. The
value in the limit of an infinitely large unit cell should be 5.114 + 0.060.(19)
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Fig. 2. The left image depicts a unit cell consisting of 902 overlapping disks of radius
R = 0.02. The area fraction is p2 = 0.65506. The disk are placed at random with the constraint
that no disk must overlap the unit cell boundary. The right image depicts the same material,
but the origin is translated so that many disks now overlap the unit cell boundaries.

that overlap the unit cell boundary. Table II shows that Eqs. (10) and ( 1 1 )
give better accuracy than Eqs. (2) and (3), which in turn give better
accuracy than Eqs, (2) and (4), for all stages of resolution. Furthermore,
for Eqs. (10) and (11) no accuracy is lost when the inclusions are allowed
to overlap the unit cell boundary.

Table II. Effective Conductivity in the x-Direction for the Aggregate of
902 Disks in Fig. 2"

aeff, left image, Eq. (3)
aeff, right image, Eq. (4)
oeff, both images,

Eq. ( 11 )
iterations, left image,

Eq. (2)
iterations, left image,

Eq. (10)
iterations, right image,

Eq (10)Eq.(10)
points, left image,

Eq. (2)
points, left image.

Eq. (10)
points, right image,

Eq. (10)
tolerance, Eq. (2)
tolerance, Eq. (10)

Stage 1

15.10
15
15.098

78

95

91

55,264

55,264

55,648

10-4

10-6

Stage 2

15.10
15.1
15.0976

80

113

91

69,072

69,072

69,522

io-4

10 7

Stage 3

15.10
15.1
15.0976

83

113

91

77,856

77,840

82,992

10 4

10- 7

Stage 6

15.10
15.1
15.09762

94

129

125

100,480

102,240

122,368

10 "
io-8

Stage 9

15.10
15.10
15.09762

107

129

124

122,320

124,848

161,600

10 -4

10-8

"The infinite medium has conductivity CT, = 1 and the disks have conductivity o2= 1000.
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Fig. 3. A unit cell consisting of 902 overlapping disks of radius R = 0.02. The area fraction,
p2 = 0.67528, is close to the percolation threshold.

C. General Composites with Nonsmooth Interfaces

The arrangement in Fig. 3 has 902 randomly overlapping disks in the
unit cell. The interfaces are nonsmooth and the unit cell boundary is
covered with both types of components. The disks radius is R = 0.02 and
the area fraction is p2= 0.67528—close to the percolation threshold. In this
particular realization there is no percolation of disks in the x-direction.
Table III shows that Eqs. (10) and (11) give roughly 100 times better
accuracy than Eqs. (2) and (4), for a given amount of work.

Figure 4 shows an arrangement of 1763 randomly overlapping disks
with radius R = 0.01414. The area fraction is p2 st= 0.67530. In this realiza-
tion there is percolation of disks in the x-direction. Table IV shows that
Eqs. (10) and (11) again give roughly 100 times better accuracy than
Eqs. (2) and (4), for a given amount of work.

"The infinite medium has conductivity a, = 1. The disks have conductivity a2 = 1000.

Table III . Effective Conductivity in the x-Direction for the Aggregate of
902 Disks in Fig. 3"

aeff, Eq. (4)
aar, Eq. ( 1 1 )
iterations, Eq. (10)
points, Eq. (2)
points, Eq. (10)
tolerance, Eq. (10)

Stage 1

48
48.32
101
57,744
58,096
io-5

Stage 2

48
48.322
120
72,176
72,608
10~6

Stage 3

48.3
48.322
120
82,032
83,856
10~6

Stage 6

48.3
48.3222
135
105,728
115,856
10~7

Stage 9

48.3
48.3222
135
128,592
146,560
10~7
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Fig. 4. A unit cell consisting of 1763 overlapping disks of radius R = 0.01414. The area
fraction, p2=0.67530, is close to the percolation threshold.

Fig. 5. A unit cell consisting of 3502 overlapping disks of radius R = 0.01. The area fraction,
p2= 0.67519, is close to the percolation threshold.

"The infinite medium has conductivity a1 = 1 and the disks have conductivity a2 = 1000.

Table IV. Effective Conductivity in the x-Direction for the Aggregate of
1763 Disks in Fig. 4"

aeff, Eq. (4)
aeff, Eq. (11)
iterations, Eq. (10)
points, Eq. (2)
points, Eq. (10)
tolerance, Eq. (10)

Stage 1

71
71.7
95
116,144
116,624
10-5

Stage 2

71
71.71
124
145,168
145,776
10-6

Stage 3

71
71.715
149
164,464
170,448
10-7

Stage 4

71.7
71.715
149
180,752
194,384
10-7
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" The infinite medium has conductivity a1 = 1 and the disks have conductivity a2 = 1000. The
numbers within perethesis denote the converged solutions at the two stages.

In the arrangement of 3502 randomly overlapping disks in Fig. 5 the
disks radius is R = 0.01 and the area fraction is p2=0.67519. In this realiza-
tion there is no percolation of disks in the x-direction. The effective con-
ductivity, presented in Table V, is even lower than that of the composite in
Fig. 3.

Tables III, IV, and V demonstrate that for unit cells with several
thousand randomly placed disks, close to the percolation threshold, and
for a degree of inhomogeneity around a thousand, details in the micro-
structure do have influence on the effective conductivity. Tables III-V also
tell us that for a relative error of 0.0005, and with Eqs. (10) and (11), it is
sufficient to use only one stage of refinement and to stop the GMRES itera-
tions when the residual is less than 10-5.

IV. BULK CALCULATIONS

The previous section shows that Eqs. (10) and (11) can give effective
properties for aggregates of overlapping disks with R = 0.01 and a2/a1 =
1000 with a relative accuracy of 0.0005 at a modest computational cost. In
a final example we produce numerical results computed with Eqs. (10) and
(11) to that same accuracy for 200 different unit cells sampling the entire
range of area fractions p2 = 0.00 to p2 = 1.00. The results are shown in
Fig. 6. The curve is rather smooth to the eye-indicating that the system can
be considered "quite large" for the chosen degree of inhomogeneity. The
computations took approximately 200 CPU hours on a SUN Ultra 1
workstation. The chosen problem size is perhaps close to what can be
treated at present on a regular workstation without swapping. The bulk of
the memory is used to store search directions in the Krylov space for the
GMRES solver.

It is of interest to compare our computed effective properties to well-
studied theoretical predictions such as bounds and effective medium

Table V. Effective Conductivity in the x-Direction for the Aggregate of
3502 Disks in Fig. 4"

ae f f ,Eq. (11)
iterations, Eq. (10)
points, Eq. (10)
tolerance, Eq. (10)

Stage 1

43.7 (43.696)
88
236,144
10-4

Stage 2

43.69 (43.6936)
155
295,168
10-6
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Fig. 6. The effective conductivity of random aggregates of overlapping disks in a unit cell at
various area fractions along with bounds and a crude estimate. Points denote the computa-
tions in this paper, the dashed lines are the Hashin Shtrikman bounds,(21) the stars are a
fourth order bound,(10-11) and the solid line is an effective medium approximation.(22) The disk
radius is R = 0.01 and the conductivity of the matrix and of the disks are a1 = 1 and a2 = 1000.

approximations. Apart from being of theoretical interest, bounds and crude
approximations give rapid answers in difficult situations when only partial
geometric information about a composite is available or when the
geometry is too complicated to be discretized. For these type of estimates
to be quantitatively useful, however, the degree of inhomogeneity must not
be too large. Figure 6 also shows the second order accurate Hashin-
Shtrikman bounds,(21) a pair of fourth order accurate bounds derived by
Milton(10) which incorporate structural data computed by Torquato and
Beasley,(11) and the Bruggeman effective medium approximation(22) for
disks. As we can see, the bounds are quite conservative and the effective
medium approximation is acceptable only for low area fractions where the
geometry resembles a dilute suspension of disks. Note that the vertical axis
has a logarithmic scale.

V. DISCUSSION

The algorithm presented in this paper should be a powerful tool for
the numerical investigation of conductivity behavior for continuum per-
colation in two dimensions. The geometry can be arbitrary. We chose disks
in our examples because it is a standard choice.
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The reader may wonder what the computational cost would be if the
code was extended to three dimensions. Here follow some thoughts on that
topic: The bulk of the computational work in the present two-dimensional
algorithm is spent in the fast multipole routine inside the GMRES solver.
We use the scheme of Greengard and Rokhlin.( l5) Assuming N uniformly
spaced discretization points in the unit cell and using seven digit accuray,
the number of operations per iteration is between 200N and 300N. The
latest version of the fast multipole method for the Laplace equation in
three dimensions(23) require approximately 2000N operations per iteration.
The complexity of the fast multipole method in two and three dimensions
is similar, while the actual work per GMRES iteration, given a number of
points and a prescribed accuracy, could be ten times larger in three dimen-
sions than in two dimensions.

While it is easy to find three dimensional analouges to the two dimen-
sional integral equations used above, discretizing interfaces in two and
three dimensions are programming tasks of different magnitude. In order to
make the three dimensional code efficient one also needs to extend our
method for evaluation of layer potentials close to their sources(07) to three
dimensions. The difficulty in these tasks are issues of parameterization and
interpolation.

The computer code used in this paper is available from the author
upon request.
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